Please contribute your calculations for the instananteous rate of change of the instance of Usain Bolt's 2008 Olympic run that you were responsible for. Please remember to demonstrate good mathematical form including proper units.
(Complete the homework from today's entry in your homework log.)
Monday, September 28, 2009
Subscribe to:
Post Comments (Atom)
This comment has been removed by the author.
ReplyDeleteAssigned Point of Race: 2 seconds
ReplyDeleteCalculations:
t(s)= 2.0 s
D(s)= 0.006163x^4-0.191217x^3+2.09964x^2+2.34451x-0.65173
D(2.0)= 0.006163(2.0)^4-0.191217(2.0)^3+2.09964(2.0)^2+2.34451(2.0)-0.65173
D(2.0)= 11.004722 m
t(s)= 2.1 s
D(2.1)= 0.006163(2.1)^4-0.191217(2.1)^3+2.09964(2.1)^2+2.34451(2.1)-0.65173
D(2.1)= 11.880151 m
AROC [2.0,2.1] = Δd/Δt
= 11.880151m – 11.004722m / 2.1s-2.0s
= 8.75429 m/s
t(s)= 2.01 s
D(2.01)= 0.006163(2.01)^4-0.191217(2.01)^3+2.09964(2.01)^2+2.34451(2.01)-0.65173
D(2.01)= 11.091289 m/s
AROC [2.0,2.01] = Δd/Δt
= 11.091289 m – 11.004722m / 2.01s-2.0s
= 8.6567 m/s
t(s)= 2.001 s
D(2.001)= 0.006163(2.001)^4-0.191217(2.001)^3+2.09964(2.001)^2+2.34451(2.001)-0.65173
D(2.001)= 11.013369 m/s
AROC [2.0,2.001] = Δd/Δt
= 11.091289 m – 11.004722m / 2.001s-2.0s
= 8.647 m/s
Assigned point of race: 0.5 seconds
ReplyDeleteS=0.5
D(0.5)=0 .006163(0.5)^3-.191217(0.5)^2+2.34451(0.5)-0.65173
D(0.5)=1.0219181 m/s
Example 1: [0.5,0.6]
S=0.6
D(0.6)= 0 .006163(0.6)^3-.191217(0.6)^2+2.34451(0.6)-0.65173
D(0.6)=1.4703423 m/s
AROC[0.5,0.6] = 1.4703423 m/s-1.0219181 m/s
0.6 s-0.5 s
AROC = 4.484242 m
Example 2: [0.5,0.51]
S=0.51
D(0.51)= 0 .006163(0.51)^3-.191217(0.51)^2+2.34451(0.51)-0.65173
D(0.51)= 1.0651383 m/s
AROC[0.5, 0.51] = 1.0651383 m/s-1.0219181 m/s
0.51 s – 0.5 s
AROC= 4.32202 m
Example 3: [0.5, 0.501]
S=0.501
D(0.501)=0 .006163(0.501)^3-.191217(0.501)^2+2.34451(0.501)-0.65173
D(0.501)= 1.0262237 m/s
AROC[0.5,0.501] = 1.0262237 m/s-1.0219181 m/s
0.501 s- 0.5s
AROC= 4.3056 m
Therefore, the instantaneous velocity at 0.5 seconds is approximately 4.305 m
Assigned Point of Race: 7.5 s
ReplyDeleteD(s) = 0.006163x^4 - 0.191217x^3 + 2.09964x^2 + 2.34451x - 0.65173
D(7.5) = 0.006163(7.5)^4 - 0.191217(7.5)^3 + 2.09964(7.5)^2 + 2.34451(7.5) - 0.65173
D(7.5) = 73.86729 m
D(7.6) = 0.006163(7.6)^4 - 0.191217(7.6)^3 + 2.09964(7.6)^2 + 2.34451(7.6) - 0.65173
D(7.6) = 75.063188 m
D(7.51) = 0.006163(7.51)^4 - 0.191217(7.51)^3 + 2.09964(7.51)^2 + 2.34451(7.51) - 0.65173
D(7.51) = 73.986991 m
D(7.501) = 0.006163(7.501)^4 - 0.191217(7.501)^3 + 2.09964(7.501)^2 + 2.34451(7.501) - 0.65173
D(7.501) = 73.879261 m
AROC (7.5-7.6) = (75.063188-73.86729)/(7.6-7.5)
AROC (7.5-7.6) = 11.95898 m/s
AROC (7.5-7.51) = (73.986991-73.86729)/(7.51-7.5)
AROC (7.5-7.51) = 11.9701 m/s
AROC (7.5-7.501) = (73.879261-73.86729)/(7.501-7.5)
AROC (7.5-7.501) = 11.971 m/s
Therefore, the instantaneous rate of change for 7.5 seconds is about 11.971 m/s.
D(4.5)=0.006163(4.5)^4-0.191217(4.5)^3+2.09964(4.5)^2+2.34451(4.5)-0.65173
ReplyDelete=37.51884106m
t: delta t:
4.5 37.51884106s
4.49 37.40015534s
4.6 37.53071258s
4.501 37.52002819s
AROC[4.49,4.5]
=(37.51884106-37.40015534) / (4.5-4.49)
=11.868572 m/s
AROC[4.5, 4.501])
=(37.53071258-37.51884106) / (4.501-4.5)
=11.87142 m/s
Therefore, I would approximate the slope of the tangent at seconds to be about 11.871 m/s.
D(s) = 0.006163x^4-0.191217x^3+2.09964x^2+2.34451x-0.65173
ReplyDeleteAssigned Point of Race: 7.5
ToV
t(s) = D(m)
7.5 = 73.86729
7.51 = 73.986991
7.501 = 73.8797261
7.5001 = 73.868487
AROC [7.5,7.51] = 73.986991 - 73.86729 m / 7.51 – 7.5 s
= 0.119701 m / 0.01 s
= 11.9701 m/s
AROC [7.5,7.501] = 73.879726 - 73.86729 m / 7.501 – 7.5 s
= 0.011971 m / 0.001 s
= 11.971 m/s
AROC [7.5,7.5001] = 73.868487 - 73.86729 m / 7.5001 – 7.5 s
= 0.001197 m / 0.0001 s
= 11.97 m/s
Therefore the instantaneous velocity at 7.5 s is approximately 11.97 m/s
Instantaneous Velocity at: 1 Second
ReplyDeleteD(s)= 0.006163x^4 -0.191217x^3 +2.09964x^2 +2.34451x -0.65173
Time(s) = 1s
D(1) = 0.006163(1)^4-0.191217(1)^3+2.09964(1)^2+2.34451(1)-0.65173
D(1)= 3.607366m
D(1.1)= 0.006163(1.1)^4-0.191217(1.1)^3+2.09964(1.1)^2+2.34451(1.1)-0.65173
D(1.1)= 4.4763653m
AROC[1.0,1.1]= Δd/Δt
= (4.476365-3.607366)/(1.1-1)
= 8.156281 m/s
D(1.01)= 0.006163(1.01)^4-0.191217(1.01)^3+2.09964(1.01)^2+2.34451(1.01)-0.65173
D(1.01)= 3.667474m
AROC[1.0,1.01]= Δd/Δt
= (3.667474-3.607366)/(1.01-1)
= 6.0108 m/s
D(1.001)= 0.006163(1.001)^4-0.191217(1.001)^3+2.09964(1.001)^2+2.34451(1.001)-0.65173
D(1.001)= 3.613362m
AROC[1.0,1.001]= Δd/Δt
= (3.613362-3.607366)/(1.001-1.0)
= 5.996m/s
Therefore the instantaneous velocity at 1 second is approximately 5.996m/s
Tangent for 9sec
ReplyDeleteTOV
T --> D
9sec 91.55786m
9.1sec 92.721571m
9.01sec 91.674289m
9.001sec 91.569504m
AROC[9,9.1]=(92.72157m-91.5579m)/(9.1s-9.0s)
=1.163711m/0.1s
=11.63711m/s
AROC[9,9.01]=(91.67429m-91.5579m)/(9.01s-9s)
=0.116429/0.01s
11.6429m/s
AROC[9,9.001]=(91.5695m-91.5579m)/(9.001s-9s)
=0.011644m/0.001s
=11.644m/s
Therefore the Tangent is at approximately 11.645m/s.
This comment has been removed by the author.
ReplyDeleteThis comment has been removed by the author.
ReplyDeleteAssigned Point of Race: 9.5 seconds
ReplyDeleteD(9.5)=0.006163(9.5)^4-0.191217(9.5)^3+2.09964(9.5)^2+2.34451(9.5)-0.65173
D(9.5)=97.36697
D(9.51)=0.006163(9.51)^4-0.191217(9.51)^3+2.09964(9.51)^2+2.34451(9.51)-0.65173
D(9.51)=97.482985
D(9.501)=0.006163(9.501)^4-0.191217(9.501)^3+2.09964(9.501)^2+2.34451(9.501)-0.65173
D(9.501)=97.378571
D(9.5001)=0.006163(9.5001)^4-0.191217(9.5001)^3+2.09964(9.5001)^2+2.34451(9.5001)-0.65173
D(9.5001)=97.36813
AROC[9.5,9.51] = (Y2-Y1)/(X2-X1)
= (97.482985m- 97.36697m) / (9.51s-9.5s)
= (0.116015m)/ (0.01s)
= 11.6015m/s
AROC[9.5,9.501] = (97.378571m- 97.36697m) / (9.501s-9.5s)
= (0.011601m) / (0.001s)
= 11.601m/s
AROC[9.5,9.5001] = (97.36813m- 97.36697m) / (9.5001s-9.5s)
= (0.00116m) / (0.0001s)
= 11.6m/s
Therefore the instantaneous velocity at 9.5 seconds is approximately 11.6m/s.
Assigned Point of Race: 4.5 s
ReplyDeleteD(s) = 0.006163x^4 - 0.191217x^3 + 2.09964x^2 + 2.34451x - 0.65173
D{6} = 0.006163{6}^4 - 0.191217{6}^3 + 2.09964{6}^2 + 2.34451{6} - 0.65173
D{6}= 55.686746 m
D{6.1}= 0.006163{6.1}^4 - 0.191217{6.1}^3 + 2.09964{6.1}^2 + 2.34451{6.1} - 0.65173
D{6.1} = 56.90795133 m
D{6.01} = 0.006163{6.01}^4 - 0.191217{6.01}^3 + 2.09964{6.01}^2 + 2.34451{6.01} - 0.65173
D{6.01} = 55.80888071 m
D{6.001} = 0.006163{6.001}^4 - 0.191217{6.001}^3 + 2.09964{6.001}^2 + 2.34451{6.001} - 0.65173
D{6.001} = 55.69895957 m
AROC [6,6.1] = (56.90795133-55.686746)/(6.1-6)
AROC [6,6.1] = 12.2120533 m/s
AROC [6,6.01] = (55.80888071-55.686746)/(6.01-6)
AROC [6,6.01] = 12.213471 m/s
AROC [6,6.001] = (73.879261-55.686746)/(6.001-6)
AROC [6,6.001] = 12.21357 m/s
Therefore, the instantaneous rate of change at 4.5 seconds is approximately 12.213 m/s.
ASSIGNED POINT OF RACE: 0.5 seconds
ReplyDeleteTABLE OF VALUES
t D(t)
0.5 1.0219181
0.6 1.4703423
0.51 1.0651303
0.501 1.0262237
INTERVAL #1
AROC[0.5, 0.6]= Δd/Δt
= (1.4703423-1.02191810) / (0.6-0.5)
=4.484242 m/s
INTERVAL #2
AROC[0.5, 0.51]= Δd/Δt
= (1.0651383-1.02191810) / (0.51-0.5)
=4.32202 m/s
INTERVAL #3
AROC[0.5, 0.501]= Δd/Δt
= (1.0262237-1.02191810 / (0.501-0.5)
=4.3056 m/s
Because the AROC value is decreasing as the interval decreases, we can assume that the instantaneous velocity at 0.5 seconds is approximately 4.305m/s.
Assigned Point of Race: 2.5 Seconds
ReplyDeleteD(2.5)= 0.006163(2.5)^4 - 0.141217(2.5)^3 + 2.09964(2.5)^2 + 2.34451(2.5)- 0.65173
= 15.58527156 (approximately)
t=2.6 s
D(2.6)= 0.006163(2.6)^4 - 0.141217(2.6)^3 + 2.09964(2.6)^2 + 2.34451(2.6)- 0.65173
= 21.23091368 (approximately)
AROC[2.5,2.6]= (21.23091368-15.58527156)/(2.6-2.5)
= 56.4564212
t= 2.51 sec
D(2.51)= 0.006163(2.51)^4 - 0.141217(2.51)^3 + 2.09964(2.51)^2 + 2.34451(2.51)- 0.65173
= 15.61259171 (approximately)
AROC[2.5,2.51](16.47244943-15.58527156)/(2.6-2.51)
= 9.857531889
t= 2.501 sec
D(2.501)= 0.006163(2.501)^4 - 0.141217(2.501)^3 + 2.09964(2.501)^2 + 2.34451(2.501)- 0.65173
= 15.59491504 (approximately)
AROC[2.5,2.501](15.59491504-15.58527156)/(2.501-2.5)
= 9.64348
Jay Cee says @ 2.5 sec he ran 9.64 m/s!
Assigned Point of Race: 2.5 Seconds
ReplyDeletet=2.5s
D(2.5)= 0.006163(2.5)^4 - 0.141217(2.5)^3 + 2.09964(2.5)^2 + 2.34451(2.5)- 0.65173
= 15.58527156 (approximately)
t=2.6 s
D(2.6)= 0.006163(2.6)^4 - 0.141217(2.6)^3 + 2.09964(2.6)^2 + 2.34451(2.6)- 0.65173
= 21.23091368 (approximately)
AROC[2.5,2.6]= (21.23091368-15.58527156)/(2.6-2.5)
= 56.4564212
t= 2.51 sec
D(2.51)= 0.006163(2.51)^4 - 0.141217(2.51)^3 + 2.09964(2.51)^2 + 2.34451(2.51)- 0.65173
= 15.61259171 (approximately)
AROC[2.5,2.51](16.47244943-15.58527156)/(2.6-2.51)
= 9.857531889
t= 2.501 sec
D(2.501)= 0.006163(2.501)^4 - 0.141217(2.501)^3 + 2.09964(2.501)^2 + 2.34451(2.501)- 0.65173
= 15.59491504 (approximately)
AROC[2.5,2.501](15.59491504-15.58527156)/(2.501-2.5)
= 9.64348
Final answer: 9.64348m/s
Usain's instantaneous velocity at 8 seconds:
ReplyDeleteD(s)=0.006163x^4-0.191217x^3+2.09964x^2+2.34451x-0.65173
D(8)=0.006163(8)^4-0.191217(8)^3+2.09964(8)^2+2.34451(8)-0.65173
D(8)=79.794710
D(8.1)= 0.006163(8)^4-0.191217(8)^3+2.09964(8)^2+2.34451(8)-0.65173
D(8.1)= 80.977155m
AROC [8,8.1]= (80.977155m-79.794710)/ (8.1-8)
=11.82445 m/s
D(8.01)=0.006163(8.01)^4-0.191217(8.01)^3+2.09964(8.01)^2+2.34451(8.01)-0.65173
D(8.01)=79.913073
AROC[8,8.01]= (79.913073-79.794710)/(8.01-8)
= 11.8363 m/s
D(8.001)= 0.006163(8.001)^4-0.191217(8.001)^3+2.09964(8.001)^2+2.34451(8.001)-0.65173
D(8.001
D(8.001)= 79.806555
AROC[8,8.001]=(79.806555-79.794710)/(8.001-8)
=11.845 m/s
Therefore, at 8 seconds Usain's instantaneous velocity was approximately 11.845 m/s
Instantaneous Speed at: 2.5 Seconds
ReplyDeletet = 2.5 s
D(2.5)= 0.006163(2.5)^4 - 0.141217(2.5)^3 + 2.09964(2.5)^2 + 2.34451(2.5)- 0.65173
= 15.58527156 m
t = 2.6 s
D(2.6)= 0.006163(2.6)^4 - 0.141217(2.6)^3 + 2.09964(2.6)^2 + 2.34451(2.6)- 0.65173
= 16.558367 m
AROC[2.5,2.6]= (16.558367-15.58527156)/(2.6-2.5)
= 9.73095000 m/s
t = 2.51 s
D(2.51)= 0.006163(2.51)^4 - 0.141217(2.51)^3 + 2.09964(2.51)^2 + 2.34451(2.51)- 0.65173
= 15.681787 m
AROC[2.5,2.51](15.681787-15.58527156)/(2.51-2.5)
= 9.651500000 m/s
t= 2.501 s
D(2.501)= 0.006163(2.501)^4 - 0.141217(2.501)^3 + 2.09964(2.501)^2 + 2.34451(2.501)- 0.65173
= 15.59491504 m
AROC[2.5,2.501](15.59491504-15.58527156)/(2.501-2.5)
= 9.643480000 m/s
Therefore the approximate instantaneous speed at 2.5 seconds is 9.643 m/s.
Assigned Point of Race: 5 seconds
ReplyDeleteCalculations:
t(s)= 5.0 s
D(s)= 0.006163x^4-0.191217x^3+2.09964x^2+2.34451x-0.65173
D(5.0)= 0.006163(5.0)^4-0.191217(5.0)^3+2.09964(5.0)^2+2.34451(5.0)-0.65173
D(5.0)= 43.51157m
t(s)= 5.01s
D(5.01)= 0.006163(5.01)^4-0.191217(5.01)^3+2.09964(5.01)^2+2.34451(5.01)-0.65173
D(5.01)= 43.632397 m
AROC [5.0, 5.01] = Δd/Δt
=43.632397m – 43.51157m / 5.01-5.0s
= 12.0827 m/s
t(s)= 5.001s
D(5.001)= 0.006163(5.001)^4-0.191217(5.001)^3+2.09964(5.001)^2+2.34451(5.001)-0.65173
D(5.001)= 43.523651 m/s
AROC [5.0, 5.001] = Δd/Δt
= 43.523651 m – 43.51157m / 5.001-5.0
= 12.081 m/s
Therefore, the AROC from 5.0-5.01 and 5.0-5.001 will be 12.0827 m/s and 12.081 m/s respectively.