Please contribute your calculations for the instananteous rate of change of the instance of Usain Bolt's 2008 Olympic run that you were responsible for. Please remember to demonstrate good mathematical form including proper units.
(Complete today's homework assignment from the homework log.)
Monday, September 28, 2009
Subscribe to:
Post Comments (Atom)
Assigned Point of Race: 2.5 seconds
ReplyDeleteD(2.5)=0.006163(2.5)^4-0.191217(2.5)^3+2.09964(2.5)^2+2.34451(2.5)-0.65173
=15.58527156
t: delta t:
2.5 15.58527156
2.6 16.55836672
2.51 15.68178688
2.501 15.59491504
AROC(2.5,2.6)
=(16.55836672-15.58527156) / 2.6-2.5
=9.7 m/s
AROC(2.5,2.51)
=(15.68178688-15.58527156) / 2.51-2.5
=9.65 m/s
AROC(2.5, 2.501)
=(15.59491504-15.58527156) / 2.501-2.5
=9.64 m/s
Therefore, I would approximate the slope of the tangent at 2.5 seconds to be about 9.64 m/s.
slope of tangent at 1 second
ReplyDeletet: delta t:
1.0 3.607366
1.1 4.2223088
1.01 3.66747
1.001 3.6133624
1.0001 3.6079655
AROC (1.0,1.1)
(4.2223088-3.607366)/(1.1-1.0)
= 6.14928
AROC (1.0,1.01)
(3.66747-3.607366)/(1.01-1.0)
= 6.0104
AROC (1.0,1.001)
(3.6133624-3.607366)/(1.001-1.0)
= 5.9964
AROC (1.0,1.0001)
(3.6079655-3.607366)/(1.0001-1.0)
= 5.995
Therefore the slope of the tangent at 1 second is approximately 5.995 m/s
Assigned Point of Race: 5 sec.
ReplyDeleteD(5)=0.006163(5)^4-0.191217(5)^3+2.09964(5)^2+2.34451(5)-0.65173
=43.51157
tv chart ...
5 43.511757
5.1 44.721175
5.01 43.632397
5.001 43.523652
AROC[5,5.1]
= (44.721175 - 43.511757)/(5.1 - 5)
= 12.09418 m/s
AROC[5,5.01]
= (43.632397 - 43.511757)/(5.01 - 5)
= 12.064 m/s
AROC[5,5.001]
= (43.523652 - 43.511757)/(5.001 - 5)
= 11.894 m/s
Therefore, I would approximate the slope of the tangent at 5 sec. to be about 11.894 m/s.
Assigned Point of Race: 5s
ReplyDeleteD(5) = 0.006163(5)^4 - 0.191217(5)^3 + 2.09964(5)^2 + 2.34451(5) - 0.65173
= 43.51157 m
t: delta t:
5 43.51157
5.1 44.721175
5.01 43.632397
5.001 43.523651
5.0001 43.5127781
AROC [5, 5.1]
= (44.721175 - 43.51157) / (5.1 - 5)
= 12.09605 m/s
AROC [5, 5.01]
= (43.632397 - 43.51157) / (5.01 - 5)
= 12.0827 m/s
AROC [5, 5.001]
= (43.526351 - 43.51157) / (5.001 - 5)
= 12.081 m/s
AROC [5, 5.0001]
= (43.5127781 - 43.51157) / (5.0001 - 5)
= 12.081 m/s
Therefore, I would approximate the slope of the tangent at 5s to be about 12.081 m/s.
assigned point of race: 2seconds
ReplyDeleteD(5)=0.006163(2)^4-0.191217(2)^3+2.09964(2)^2+2.34451(2)-0.65173= 11.004722
Table of Values
2= 11.004722
2.1= 11.880151
2.01= 11.091289
2.001= 11.013369
AROC [2,2.1]
= (11.880151-11.004722)/(2.1-2)
= 8.75429
AROC [2,2.01]
= (11.091289-11.004722)/(2.01-2)
= 8.6567
AROC [2, 2.001]
= (11.013369-11.004722)/(2.001-2)
=8.647
Therefore, the slope of the tangent at 2 seconds, is approximately 8.65m.
Find the Instantaneous velocity at 9.5 seconds:
ReplyDeleteD(9.5)=0.006163(9.5)^4-0.191217(9.5)^3+2.09964(9.5)^2+2.34451(9.5)-0.65173
D(9.5)=97.36697
D(9.6)=0.006163(9.6)^4-0.191217(9.6)^3+2.09964(9.6)^2+2.34451(9.6)-0.65173
D(9.6)=98.527053
D(9.51)=0.006163(9.51)^4-0.191217(9.51)^3+2.09964(9.51)^2+2.34451(9.51)-0.65173
D(9.51)=97.482985
D(9.501)=0.006163(9.501)^4-0.191217(9.501)^3+2.09964(9.501)^2+2.34451(9.501)-0.65173
D(9.501)=97.378571
D(9.5001)=0.006163(9.5001)^4-0.191217(9.5001)^3+2.09964(9.5001)^2+2.34451(9.5001)-0.65173
D(9.5001)=97.36813
AROC[9.5,9.6] = (Y2-Y1)/(X2-X1)
AROC[9.5,9.6] = (98.527053m- 97.36697m) / (9.6s-9.5s)
AROC[9.5,9.6] = 1.160083m / 0.1s
AROC[9.5,9.6] = 11.60083m/s
AROC[9.5,9.51] = (Y2-Y1)/(X2-X1)
AROC[9.5,9.51] = (97.482985m- 97.36697m) / (9.51s-9.5s)
AROC[9.5,9.51] = (0.116015m)/ (0.01s)
AROC[9.5,9.51] = 11.6015m/s
AROC[9.5,9.501] = (Y2-Y1)/(X2-X1)
AROC[9.5,9.501] = (97.378571m- 97.36697m) / (9.501s-9.5s)
AROC[9.5,9.501] = (0.011601m) / (0.001s)
AROC[9.5,9.501] = 11.601m/s
AROC[9.5,9.5001] = (Y2-Y1)/(X2-X1)
AROC[9.5,9.5001] = (97.36813m- 97.36697m) / (9.5001s-9.5s)
AROC[9.5,9.5001] = (0.00116m) / (0.0001s)
AROC[9.5,9.5001] = 11.6m/s
The tangent is tending towards 11.6m/s.
Therefore, I would approximate the slope of the tangent at 9.5seconds will be about 11.6m/s.
This comment has been removed by the author.
ReplyDeleteAssigned point of race: 4.5 seconds
ReplyDeleteD(4.5):37.5191406
D(4.6):38.70885662
D(4.51):37.63788019
D(4.501):37.53101258
AROC(4.5,4.6):11.8971602
AROC(4.5,4.51): 11.873959
AROC(4.5,4.501):11.87198
Therefore I would approximate the slope of the tangent at 4.5 second to be about 11.87 m/s
D(4.5) = 37.5191406
ReplyDeleteD(4.6) = 38.70885662
D(4.51) = 37.63788019
D(4.501) = 37.53101258
AROC(4.5, 4.6)
= 38.70885662-37.5191406/4.6-4.5
= 11.8971602
AROC(4.5, 4.51)
= 37.63788019-37.5191406/4.51-4.5
= 11.873959
AROC(4.5, 4.501)
= 37.53101258-37.5191406/4.501-4.5
= 11.87198
Therefore the approximate instantaneous speed of Usain at 4.5 s is 11.87198m/s
Assigned Time: 3 seconds
ReplyDeleteD(3) = 20.614904
D(3.1) = 21.666412
D(3.01) = 20.719426
D(3.001) = 20.62535
AROC (3,3.1)
= 21.666412 - 20.614904/3.1-3
= 10.51508m/s
AROC (3,3.01)
= 20.719426-20.614904/3.01-3
= 10.4522 m/s
AROC (3,3.001)
= 20.62535-20.614904/3.001-3
= 10.446 m/s
Therefore the approximate instantaneous speed at 3 seconds is 10.466 m/s
D(4)= 31.66039
ReplyDeleteD(4.1)= 32.818359
D(4.01)= 31.775839
D(4.001)= 31.671931
AROC (4,4.1)
= 32.818359 - 31.66039/4.1-4
= 11.57969m/s
AROC (4,4.01)
= 31.775839-31.66039/4.01-4
= 11.5449 m/s
AROC (4,4.001)
= 31.671931-31.66039/4.001-4
= 11.541 m/s
the instantaneous speed at 4 seconds is 11.541 m/s
D(4.5)=0.006163(4.5)^4-0.191217(4.5)^3+2.09964(4.5)^2+2.34451(4.5)-0.65173
ReplyDelete=37.51884106m
t: delta t:
4.5 37.51884106s
4.49 37.40015534s
4.6 37.53071258s
4.501 37.52002819s
AROC[4.49,4.5]
=(37.51884106-37.40015534) / (4.5-4.49)
=11.868572 m/s
AROC[4.5, 4.501])
=(37.53071258-37.51884106) / (4.501-4.5)
=11.87142 m/s
Therefore, I would approximate the slope of the tangent at seconds to be about 11.871 m/s.
Assigned time of race: 8.5 s
ReplyDeleteTable of Values:
8.5=85.71570006
8.51=85.83300476
8.501=85.72743147
8.5001=85.71687321
AROC[8.51-8.5]
=(85.83300476-85.71570006)/(8.51-8.5)
=11.73047
AROC[8.501-8.51]
=(85.72743147-85.83300476)/(8.501-8.51)
=11.73036556
AROC[8.5001-8.501]
=(85.71687321-85.72743147)/(8.5001-8.501)
=11.7314
Therefore the approximate IROC at 8.5s is 11.7314m/s
:)
To calculate the instantaneous rate of change at 1.5 seconds:
ReplyDeleteAROC [1.5, 1.51] = 7.44913
AROC [1.5, 1.501] = 7.4373
AROC [1.5, 1.5001] = 7.436
Therefore, the approximate average rate of change at 1.5 seconds is 7.436. The number is slowly approaching 7.4
5.5 seconds
ReplyDeleteD(5.5) = 0.006163(5.5)^4 - 0.191217(5.5)^3 + 2.09964(5.5) + 2.34451(5.5) - 0.65173
≈49.5829681
AROC [5.5, 5.6] = 50.802472m-49.582987m / 5.6s - 5.5s
≈12.19485 m/s
AROC [5.5, 5.51] = 49.704884m-49.582987m / 5.51s - 5.5s
≈12.1897 m/s
AROC [5.5, 5.501] = 49.595176m-49.582987m / 5.501s - 5.5s
≈12.189 m/s
∴ I would approximate the slope of the tangent at 5.5 seconds to be about 12.189 m/s.
Assigned Point of Race: 8.5s
ReplyDeleteD(8.5)= 0.006163(8.5)^4-0.191217(8.5)^3+ 2.09964(8.5)^2+2.34451(8.5)- 0.65173
D(8.5)=85.71570
TOV
8.5=85.71570
8.6= 86.88782
8.51= 85.83300
8.501= 85.72743
AROC[8.5,8.6]= 86.88782-85.71570/8.6-8.5
= 11.7212 m/s
AROC[8.5,8.51]= 85.83300-85.71570/8.51-8.5
= 11.73 m/s
AROC[8.5,8.501]=85.72743-85.71570/8.501-8.5
= 11.73 m/s
Therefore i would approx the slope of the tangent at 8.5s to be about 11.73 m/s
D(6.5)= 61.785197
ReplyDeleteD(6.6)= 63.002361
D(6.51)= 61.907471
D(6.501)= 61.797919
AROC(6.6,6.5)= 63.002361-61.785197/6.6-6.5
= 12.17164 m/s
AROC(6.5,6.51)=61.907471-61.785197/6.51-6.5
= 12.2274 m/s
AROC(6.501,6.5)=61.797919-61.785197/6.501-6.5
= 12.722 m/s
The instantaneous velocity for 6.5 secs would be 12.722 m/s.
At 2 seconds...
ReplyDeleteD(5)=0.006163(2)^4-0.191217(2)^3+2.09964(2)^2+2.34451(2)-0.65173= 11.004722
TOV
2 = 11.004722
2.1 = 11.880151
2.01 = 11.091289
2.001 = 11.013369
AROC [2,2.1]
= (11.880151-11.004722)/(2.1-2)
= 8.75429
AROC [2,2.01]
= (11.091289-11.004722)/(2.01-2)
= 8.6567
AROC [2, 2.001]
= (11.013369-11.004722)/(2.001-2)
=8.647
Therefore, i would approximate the slope of the tangent 2s to be about 8.65 m/s.
Assigned Point of Race: 5.5s
ReplyDeleteThese points are the calculated results in the TOV:
(5.5, 4958298681), (5.6, 50.80247161), (5.51, 49.70488391), (5.501, 29.59517596), (5.5001, 49.58420572), (5.50001, 49.5831087)
The average rate of change for each time interval:
AROC[5.5, 5.6] = (Y2-Y1)/(X2-X1)
AROC[5.5, 5.6] = (50.80247161m- 49.58298681m) / (5.6s-5.5s)
AROC[5.5, 5.6] = 12.194848m/s
AROC[5.5, 5.51] = (Y2-Y1)/(X2-X1)
AROC[5.5, 5.51] = (49.70488391m- 49.58298681m) / (5.51s-5.5s)
AROC[5.5, 5.51] = 12.18971m/s
AROC[5.5, 5.501] = (Y2-Y1)/(X2-X1)
AROC[5.5, 5.501] = (49.59517593m- 49.58298681m) / (5.501s-5.5s)
AROC[5.5, 5.501] = 12.18915m/s
AROC[5.5, 5.5001] = (Y2-Y1)/(X2-X1)
AROC[5.5, 5.5001] = (49.58420572m- 49.58298681m) / (5.5001s-5.5s)
AROC[5.5, 5.5001] = 12.1891m/s
AROC[5.5, 5.50001] = (Y2-Y1)/(X2-X1)
AROC[5.5, 5.50001] = (49.5831087m- 49.58298681m) / (5.50001s-5.5s)
AROC[5.5, 5.50001] = 12.189m/s
Therefore, I would approximate the slope of the tangent at 5.5 seconds to be about 12.189m/s.
Assigned Point of Race: 8.0s
ReplyDeleteD(8)=0.006163(8)^4-0.191217(8)^3+ 2.09964(8)^2+2.34451(8)- 0.65173
D(8)=79.821854
Table of Values:
8=79.821854
8.1=81.00532
8.01=79.94031
8.001=79.83370
AROC[8,8.1]=81.00532-79.821854/8.1-8
=11.83466 m/s
AROC[8,8.01]=79.94031-79.821854/8.01-8
=11.8456 m/s
AROC[8,8.001]=79.83370-79.821854/8.001-8
=11.846 m/s
Therefore I would approximate the slope of the tangent at 8s to be about 11.846 m/s.
I was assigned: 4 seconds
ReplyDelete1. (4, 31.66039)
2. (4.1, 32.818359)
3. (4.01, 31.775839)
4. (4.001, 31.671931)
AROC for:
1.
= (32.818359 - 31.66039)/(4.1-4)
= 11.57969m/s
2.
= 31.775839-31.66039/4.01-4
= 11.5449 m/s
3.
= 31.671931-31.66039/4.001-4
= 11.541 m/s
therefore i would approximate the instantaneous slope at 4 seconds to be 11.541m/s.
Assigned Time: 7.5 seconds
ReplyDeleteTable of Values
7.5 = 73.86729031 s
7.6 = 75.06318768 s
7.51 = 73.98699107 s
7.501 = 73.87926149 s
AROC = (v2 - v1 )/ (t2 - t1)
AROC (7.6-7.5) = 11.9589737 s
AROC (7.51 - 7.5) = 11.970076 s
AROC (7.501 - 7.5) = 11.97118 s
The approximate IROC at 7.5s is 11.9712 seconds
D(3) = 20.614904
ReplyDeleteD(3.1) = 21.666412
D(3.01) = 20.719426
D(3.001) = 20.62535
AROC [3,3.1]
= (21.666412 - 20.614904)/(3.1-3)
= 10.51508 m/s
AROC [3,3.01]
= (20.719426-20.614904)/(3.01-3)
= 10.4522 m/s
AROC [3,3.001]
= (20.62535-20.614904)/(3.001-3)
= 10.446 m/s
I would approximate the slope of the tangent at 3 sec to be about 10.446m/s.
Assigned Point of Race: 7 s
ReplyDeleteD(s) = 0.006163x^4 - 0.191217x^3 + 2.09964x^2 + 2.34451x - 0.65173
D{7} = 0.006163{7}^4 - 0.191217{7}^3 + 2.09964{7}^2 + 2.34451{7} - 0.65173
D{7}= 67.852132m
D{7.1}= 0.006163{7.1}^4 - 0.191217{7.1}^3 + 2.09964{7.1}^2 + 2.34451{7.1} - 0.65173
D{7.1} = 68.715988 m
D{7.01} = 0.006163{7.01}^4 - 0.191217{7.01}^3 + 2.09964{7.01}^2 + 2.34451{7.01} - 0.65173
D{7.01} = 67.97298365 m
D{7.001} = 0.006163{7.001}^4 - 0.191217{7.001}^3 + 2.09964{7.001}^2 + 2.34451{7.001} - 0.65173
D{7.001} = 67.8642181 m
AROC [7,7.1] = (68.715988-67.852132)/(7.1-7)
AROC [7,7.1] = 8.63856m/s
AROC [7,7.01] = (67.97298365-67.852132)/(7.01-7)
AROC [7,7.01] = 12.085165 m/s
AROC [7,7.001] = (67.8642181-67.852132)/(7.001-7)
AROC [7,7.001] = 12.0861 m/s
I would approximate the slope of the tangeat at 7 second to be about 12.0861m/s
For 2s
ReplyDeleteD(2)=0.006163(2)^4-0.191217(2)^3+2.09964(2)^2+2.34451(2)-0.65173
=11.004722
D(2)=11.004722
D(2.1)=11.880151
D(2.01)=11.091289
D(2.001)=11.013369
AROC[2,2.1]
=(11.880151-11.004722)/(2.1-2)
=8.75429
AROC[2,2.01]
=(11.091289-11.004722)/(2.01-2)
=8.6567
AROC[2,2.001]
=(11.013369-11.004722)/(2.001-2)
=8.647
Therefore, the slope of the tangent at 2 seconds will be approximately 8.65m/s
Assigned point of race: 1.5 seconds
ReplyDeleteD(s) = 0.006163x^4 - 0.191217x^3 + 2.09964x^2 + 2.34451x - 0.65173
D(1.5)=0.006163(1.5)^4-0.191217(1.5)^3+2.09964(1.5)^2+2.34451(1.5)-0.65173
= 6.975068
D(1.6)=0.006163(1.6)^4-0.191217(1.6)^3+2.09964(1.6)^2+2.34451(1.6)-0.65173
= 7.731729
D(1.51)=0.006163(1.51)^4-0.191217(1.51)^3+2.09964(1.51)^2+2.34451(1.51)-0.65173
= 7.049559
D(1.501)=0.006163(1.501)^4-0.191217(1.501)^3+2.09964(1.501)^2+2.34451(1.501)-0.65173
= 6.982505
AROC [1.5, 1.6]= (7.731729-6.975068)/(1.6-1.5)
AROC [1.5, 1.6]= 7.56661m/s
AROC [1.5, 1.51]= (7.049559-6.975068)/(1.51-1.5)
AROC [1.5, 1.51]= 7.4491m/s
AROC [1.5, 1.501]= (6.982505-6.975068)/(1.501-1.5)
AROC [1.5, 1.501]= 7.437m/s
Therefore the slope of the tangent at 1.5 seconds is approximately 7.44m/s.